Panamerican Journal of Trauma, Critical Care & Emergency Surgery

Register      Login

VOLUME 11 , ISSUE 1 ( January-April, 2022 ) > List of Articles

INVITED ARTICLE

Fundamentos Para La Elaboración De Artículos Científicos En Trauma Y Cuidado Agudo De Emergencias (Parte 5-A): Bases Y Fundamentaciones De Metodología Estadística

Angelica Clavijo, Diana M Sánchez Parra, Juan P Ávila, Diana Urrego, Andrés M. Rubiano

Keywords : Descriptive statistics, Epidemiology, Statistical analysis, Statistical methods

Citation Information : Clavijo A, Parra DM, Ávila JP, Urrego D, Rubiano AM. Fundamentos Para La Elaboración De Artículos Científicos En Trauma Y Cuidado Agudo De Emergencias (Parte 5-A): Bases Y Fundamentaciones De Metodología Estadística. Panam J Trauma Crit Care Emerg Surg 2022; 11 (1):34-44.

DOI: 10.5005/jp-journals-10030-1365

License: CC BY-NC 4.0

Published Online: 04-05-2022

Copyright Statement:  Copyright © 2022; The Author(s).


Abstract

Introduction: An appropriate use of statistical methodology to analyze data or to discriminate the methodological quality of relevant studies applicable to clinical practice is a fundamental skill for trauma and emergency acute care teams. Considering that these skills arise from the understanding and application of pre-established methodologies, the aim of this article is to provide the basis and foundations of statistical methodology in medical research, as an initial step for the correct analysis of ongoing studies and/or for the interpretation of results in clinical studies published in the scientific literature. Materials and methods: A narrative review of relevant literature available in databases was carried out and concepts available in gray literature sources such as traditional statistical reference texts were added. Results: Fourteen topics of relevance for the analysis and interpretation of results were defined, which, due to their length, will be presented in two deliveries (Part 5-A and Part 5-B). This first installment includes an introduction to statistics, epidemiological concepts and variables, probabilities and their distributions, hypothesis testing, types of error and validity, selection of statistical methods, methodological design of a study, types of clinical studies, and the methodology for determining the population and the sample. Conclusion: The fundamental concepts in statistics, including basic aspects of epidemiology and the types of study designs in clinical research are critical elements for the appropriate analysis of data in clinical research and for the correct evaluation of the quality of published articles to be implemented in the practice of trauma surgery and acute emergency care. Their knowledge is essential for the appropriate interaction between students and mentors involved in the elaboration of scientific manuscripts in this clinical subspecialty.


PDF Share
  1. Djulbegovic B, Guyatt GH. Progress in evidence-based medicine: a quarter century on. Lancet Lond Engl 2017;390(10092):415–423. DOI: 10.1016/S0140-6736(16)31592-6
  2. Evidence-Based Medicine Working Group. Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA 1992;268(17):2420–2425. DOI: 10.1001/jama.1992.03490170092032
  3. Junquera LM, Baladrón J, Albertos JM, et al. Medicina basada en la evidencia (MBE): Ventajas. Rev Esp Cir Oral Maxilofac 2003;25(5):265–272. DOI: 10.4321/s1130-05582003000500003
  4. Sackett DL, Rosenberg WM, Gray JA, et al. Evidence based medicine: what it is and what it isn't. BMJ 1996;312(7023):71–72. DOI: 10.1136/bmj.312.7023.71
  5. Umesh G, Karippacheril JG, Magazine R. Critical appraisal of published literature. Indian J Anaesth 2016;60(9):670–673. DOI: 10.4103/0019-5049.190624
  6. Castro EMM. Bioestadística aplicada en investigación clínica: conceptos básicos. Rev Médica Clínica Las Condes. 2019;30(1):50–65.
  7. Mishra P, Pandey CM, Singh U, et al. Descriptive statistics and normality tests for statistical data. Ann Card Anaesth 2019;22(1):67–72. DOI: 10.4103/aca.ACA_157_18
  8. Wanyne w. Daniel. Bioestadística: base para el análisis en las ciencias de la salud. Tercera Edición. México: Limusa; 1991.
  9. Molina Arias M, Molina Arias M. ¿Qué significa realmente el valor de p? Pediatría Aten Primaria. 2017;19(76):377–8381.
  10. Henry Oliveros. Manual de investigación biomédico-clínico. Distribuna LTDA.
  11. Chander NG. Study validity. J Indian Prosthodont Soc 2018;18(1):1–2. DOI: 10.4103/jips.jips_322_17
  12. Patino CM, Ferreira JC. Internal and external validity: can you apply research study results to your patients? J Bras Pneumol 2018;44(3):183. DOI: 10.1590/S1806-37562018000000164
  13. Manterola C, Otzen T. Los Sesgos en Investigación Clínica. Int J Morphol 2015;33(3):1156–1164.
  14. Errores en epidemiología. Errores sistemáticos. Factores de confusión y modificación del efecto [Internet]. [cited 2021]. Available from:https://evidenciasenpediatria.es/articulo/6872/errores-en-epidemiologia-errores-sistematicos-factores-de-confusion-y-modificacion-del-efecto
  15. Sauerbrei W, Blettner M. Interpreting Results in 2 × 2 Tables: Part 9 of a Series on Evaluation of Scientific Publications. Dtsch Ärztebl Int 2009;106(48):795.
  16. Cardenas AJ. Tablas de contingencia: Cómo analizarlas fácilmente [Internet]. Networkianos. Blog de Sociología. 2015 [cited 2021]. Available from: http://networkianos.com/tablas-de-contingencia/
  17. Fuentes Ferrer ME, Prado González N del. Medidas de frecuencia y de asociación en epidemiología clínica. An Pediatría Contin 2013;11(6):346–349.
  18. Ressing M, Blettner M, Klug SJ. Data analysis of epidemiological studies. Dtsch Arzteblatt Int 2010;107(11):187–192. DOI: 10.3238/arztebl.2010.0187
  19. Cerda J, Vera C, Rada G. Odds ratio: aspectos teóricos y prácticos. Rev Médica Chile 2013;141(10):1329–35.
  20. Alfredo de Jesús Celis de la Rosa, Vanessa Labrada Martagón. Bioestadística. Tercera Edición. El Manual Moderno; 2014.
  21. Vetter TR. Fundamentals of research data and variables: the devil is in the details. Anesth Analg 2017;125(4):1375–1380. DOI: 10.1213/ANE.0000000000002370
  22. Flores-Ruiz E, Miranda-Novales MG, Villasís-Keever MÁ. El protocolo de investigación VI: cómo elegir la prueba estadística adecuada. Estadística inferencial. Rev Alerg México 2017;64(3):364–370.
  23. Khusainova RM, Shilova ZV, Curteva OV. Selection of appropriate statistical methods for research results processing. Int Electron J Math Educ 2016;11(1):303–315.
  24. Röhrig B, du Prel J-B, Blettner M. Study design in medical research. Dtsch Ärztebl Int 2009;106(11):184–189.
  25. Lira RPC, Rocha EM. PICOT: imprescriptible items in a clinical research question. Arq Bras Oftalmol 2019;82:1. DOI: 10.5935/0004-2749.20190028
  26. Sedgwick P. Unit of observation versus unit of analysis. BMJ [Internet]. 2014 [cited 2021];348. Available from: https://www.bmj.com/content/348/bmj.g3840
  27. Roberto Hernandez Sampieri R., Torres CPM. Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta | RUDICS [Internet]. 1st ed. Vol. 1. Mexico: McGrawHill; 2018 [cited 2021]. 714 p. Available from: www.mhhe.com/latam/sampieri.mi1e
  28. Viti A, Terzi A, Bertolaccini L. A practical overview on probability distributions.J Thorac Dis 2015;7(3):E7–E10. DOI: 10.3978/j.issn.2072-1439.2015.01.37
  29. Heßler N, Rottmann M, Ziegler A. Empirical analysis of the text structure of original research articles in medical journals. PloS One 2020;15(10):e0240288. DOI: 10.1371/journal.pone.0240288
  30. Andrade C. The P value and statistical significance: misunderstandings, explanations, challenges, and alternatives. Indian J Psychol Med 2019;41(3):210–215. DOI: 10.4103/ijpsym.ijpsym_193_19
  31. Hayat MJ, Higgins M. Understanding poisson regression. J Nurs Educ 2014;53(4):207–215. DOI: 10.3928/01484834-20140325-04
  32. Banerjee A, Chitnis UB, Jadhav SL, et al. Hypothesis testing, type I and type II errors. Ind Psychiatry J 2009;18(2):127–131. DOI: 10.4103/0972-6748.62274
  33. Inferencia estadística: contraste de hipótesis [Internet]. [cited 2021]. Available from: https://evidenciasenpediatria.es/articulo/7537/inferencia-estadistica-contraste-de-hipotesis
  34. Cortés-Reyes É, Rubio-Romero JA, Gaitán-Duarte H. Métodos estadísticos de evaluación de la concordancia y la reproducibilidad de pruebas diagnósticas. Rev Colomb Obstet Ginecol 2010;61(3):247–255.
  35. La fiabilidad de las mediciones clínicas: el análisis de concordancia para variables numéricas [Internet]. [cited 2021]. Available from: https://www.fisterra.com/mbe/investiga/conc_numerica/conc_numerica.asp
  36. Eslava-Schmalbach J, Escobar-Córdoba F. Error aleatorio, sesgo y fraude en las publicaciones científicas. Colomb J Anestesiol 2012;40(2):91–94.
  37. Hernández-Avila M, Garrido F, Salazar-Martínez E. Sesgos en estudios epidemiológicos. Salud Pública México 2000;42:438–446.
  38. Metodologías Cuantitativas 2: Sesgo de confusión y cómo controlar un confusor | Revista del Cuerpo Médico Hospital Nacional Almanzor Aguinaga Asenjo. [cited 2021]; Available from: http://www.cmhnaaa.org.pe/ojs/index.php/rcmhnaaa/article/view/675
  39. Nunan D, Aronson J, Bankhead C. Catalogue of bias: attrition bias. BMJ Evid-Based Med 2018;23(1):21–22. DOI: 10.1136/ebmed-2017-110883
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.