Panamerican Journal of Trauma, Critical Care & Emergency Surgery

Register      Login

VOLUME 8 , ISSUE 2 ( May-August, 2019 ) > List of Articles


Beta-blockers in Traumatic Brain Injury

Airton Leonardo de Oliveira Manoel, Ayman El-Menyar, Ruben Peralta, Hassan Al-Thani

Keywords : Beta-blockers, Catecholamines, Prognosis, Traumatic brain injury

Citation Information : Manoel AL, El-Menyar A, Peralta R, Al-Thani H. Beta-blockers in Traumatic Brain Injury. Panam J Trauma Crit Care Emerg Surg 2019; 8 (2):80-90.

DOI: 10.5005/jp-journals-10030-1241

License: CC BY-NC 4.0

Published Online: 04-08-2019

Copyright Statement:  Copyright © 2019; The Author(s).


Severe traumatic brain injury (TBI) is a major public health issue, responsible for high rates of long-term disability and mortality. Although severe TBI is a leading cause of death worldwide, even mild head injuries can adversely impact the functional outcome. It is well described that trauma produces a complex stress response to reestablishing homeostasis. The activation of the stress response (i.e., the hypothalamic–pituitary–adrenal axis and the sympathetic nervous system) leads to the release of glucocorticoids and catecholamines. Although fundamental for survival, the stress response is one of the major players in the development of posttraumatic complications. TBI in particular leads to a fast and intense sympathetic nervous system's activation with huge liberation of both central and peripheral catecholamines, including epinephrine (Epi) and norepinephrine (NE). Since catecholamine levels increase exponentially after TBI, they have been appraised as possible prognostic biomarkers and a target for intervention in this clinical setting. Currently, there is no particular pharmacological treatment available to reduce or limit the progression of secondary brain injury after TBI. However, preliminary data on the use of β-blockers after TBI have shown promising results. A recent meta-analysis estimated an in-hospital mortality reduction of 65%, while a matched case–control study described that the exposure to a β-blocker were associated with improved functional outcome. Despite these promising and interesting results, the use of β-blockage in the acute phase of TBI remains experimental, requiring further evaluation in a well-designed multicenter randomized clinical trial.

  1. Rizoli SB, Jaja BNR, et al. Catecholamines as outcome markers in isolated traumatic brain injury: the COMA-TBI study. Critical Care 2017;21(1):1–10. DOI: 10.1186/s13054-017-1620-1626.
  2. Woolf PD, Hamill RW, et al. The predictive value of catecholamines in assessing outcome in traumatic brain injury. J Neurosurg 1987;66(6):875–882. DOI: 10.3171/jns.1987.66.6.0875.
  3. Chesnut RM, Marshall SB, et al. Early and late systemic hypotension as a frequent and fundamental source of cerebral ischemia following severe brain injury in the Traumatic Coma Data Bank. Acta Neurochir Suppl (Wien) 1993;59:121–125.
  4. Berry C, Ley EJ, et al. Redefining hypotension in traumatic brain injury. Injury 2012;43(11):1833–1837. DOI: 10.1016/j.injury.2011.08.014.
  5. Carney N, Totten AM, et al. Guidelines for the Management of Severe Traumatic Brain Injury. Neurosurgery 2017 Jan 1;80(1):6–15. DOI: 10.1227/NEU.0000000000001432.
  6. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons. Guidelines for the management of severe traumatic brain injury. J Neurotrauma 2007;24(Suppl. 1)):S1–S106. DOI: 10.1089/neu.2007.9999.
  7. Brenner M, Stein DM, et al. Traditional systolic blood pressure targets underestimate hypotension-induced secondary brain injury. J Trauma 2012;72(5):1135–1139. DOI: 10.1097/TA.0b013e31824af90b.
  8. Murray GD, Butcher I, et al. Multivariable Prognostic Analysis in Traumatic Brain Injury: Results from The IMPACT Study. J Neurotrauma 2007;24(2):329–337. DOI: 10.1089/neu.2006.0035.
  9. Spaite DW, Hu C, et al. Mortality and Prehospital Blood Pressure in Patients With Major Traumatic Brain Injury. JAMA Surg December 2016; 1–9. DOI: 10.1001/jamasurg.2016.4686.
  10. Dunser MW, Ruokonen E, et al. Association of arterial blood pressure and vasopressor load with septic shock mortality: a post hoc analysis of a multicenter trial. Crit Care 2009;13(6):R181–R181. DOI: 10.1186/cc8167.
  11. Herndon DN, Hart DW, et al. Reversal of Catabolism by Beta-Blockade after Severe Burns. N Engl J Med 2001;345(17):1223–1229. DOI: 10.1056/NEJMoa010342.
  12. Diaz EC, Herndon DN, et al. Effects of pharmacological interventions on muscle protein synthesis and breakdown in recovery from burns. Burns 2015;41(4):649–657. DOI: 10.1016/j.burns.2014.10.010.
  13. Hammerle AF, Hackl JM, et al. The activity of the sympathetic nervous system following severe head injury. Intensive Care Med 1980;6(3):169. DOI: 10.1007/BF01757299.
  14. McLeod AA, Neil-Dwyer G, et al. Cardiac sequelae of acute head injury. Br Heart J 1982;47(3):221–226. DOI: 10.1136/hrt.47.3.221.
  15. Larremore T, Markovchick V. Cardiac sequelae of acute head injury. Br Heart J 1983;49(1):101–102. DOI: 10.1136/hrt.49.1.101.
  16. Zygun DA, Kortbeek JB, et al. Non-neurologic organ dysfunction in severe traumatic brain injury*. Crit Care Med 2005;33(3):654–660. DOI: 10.1097/01.CCM.0000155911.01844.54.
  17. Zygun D. Non-neurological organ dysfunction in neurocritical care: impact on outcome and etiological considerations. Curr Opin Crit Care 2005;11(2):139–143. DOI: 10.1097/01.ccx.0000155356.86241.c0.
  18. Clifton GL, Ziegler MG, et al. Circulating catecholamines and sympathetic activity after head injury. Neurosurgery 1981;8(1):10–14. DOI: 10.1227/00006123-198101000-00003.
  19. Salim A, Hadjizacharia P, et al. Significance of Troponin Elevation After Severe Traumatic Brain Injury. J Trauma 2008;64(1):46–52. DOI: 10.1097/TA.0b013e31815eb15a.
  20. Martin M, Mullenix P, et al. Troponin Increases in the Critically Injured Patient: Mechanical Trauma or Physiologic Stress? J Trauma November 2005; 1086–1091. DOI: 10.1097/01.ta.0000190249.19668.37.
  21. El-Menyar A, Asim M, et al. Predictive value of positive high-sensitivity troponin T in intubated traumatic brain injury patients. J Neurosurg 2017;129(6):1541–1549. DOI: 10.3171/2017.7.JNS17675.
  22. Akashi YJ, Goldstein DS, et al. Takotsubo Cardiomyopathy. Circulation 2008;118(25):2754–2762. DOI: 10.1161/CIRCULATIONAHA.108.767012.
  23. Smith WS, Matthay MA. Evidence for a hydrostatic mechanism in human neurogenic pulmonary edema. Chest 1997;111(5):1326–1333. DOI: 10.1378/chest.111.5.1326.
  24. Di Battista AP, Rizoli SB, et al. Sympathoadrenal Activation is Associated with Acute Traumatic Coagulopathy and Endotheliopathy in Isolated Brain Injury. Shock May 2016; 1–32. DOI: 10.1097/SHK.0000000000000642.
  25. Davidson JT, Charuzi I. Epinephrine-induced changes in the pulmonary pressure-volume curve of the intact and hypovolemic rabbit. Chest 1973;63(2):250–253. DOI: 10.1378/chest.63.2.250.
  26. Ducker TB, Simmons RL. Increased intracranial pressure and pulmonary edema. 2. The hemodynamic response of dogs and monkeys to increased intracranial pressure. J Neurosurg 1968;28(2):118–123. DOI: 10.3171/jns.1968.28.2.0118.
  27. Ley EJ, Clond MA, et al. β-Adrenergic receptor inhibition affects cerebral glucose metabolism, motor performance, and inflammatory response after traumatic brain injury. J Trauma Acute Care Surg 2012;73(1):33–40. DOI: 10.1097/TA.0b013e31825a769b.
  28. Bell MJ, Kochanek PM, et al. Comparison of the interleukin-6 and interleukin-10 response in children after severe traumatic brain injury or septic shock. Acta Neurochir Suppl 1997;70:96–97.
  29. McKeating EG, Andrews PJ, et al. Transcranial cytokine gradients in patients requiring intensive care after acute brain injury. Br J Anaesth 1997;78(5):520–523. DOI: 10.1093/bja/78.5.520.
  30. Jacome T, Tatum D. Systemic Inflammatory Response Syndrome (SIRS) Score Independently Predicts Poor Outcome in Isolated Traumatic Brain Injury. Neurocrit Care May 2017;1–7. DOI: 10.1007/s12028-017-0410-y.
  31. de Oliveira Manoel AL, Neto AC, et al. Traumatic Brain Injury Associated Coagulopathy. Neurocrit Care 2014;22(1):34–44. DOI: 10.1007/s12028-014-0026-4.
  32. El-Menyar A. Beta Blockers Therapy In Traumatic Brain Injury. J Trauma Acute Care Surg February 2018;1–8. DOI: 10.1097/TA.0000000000001865.
  33. Ristagno G, Sun S, et al. Effects of epinephrine and vasopressin on cerebral microcirculatory flows during and after cardiopulmonary resuscitation*. Crit Care Med 2007;35(9):2145–2149. DOI: 10.1097/01.CCM.0000280427.76175.D2.
  34. Ristagno G, Tang W, et al. Epinephrine reduces cerebral perfusion during cardiopulmonary resuscitation*. Crit Care Med 2009;37(4):1408–1415. DOI: 10.1097/CCM.0b013e31819cedc9.
  35. Di Battista AP, Rhind SG, et al. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J Neuroinflammation 2016;13(1):1–14. DOI: 10.1186/s12974-016-0500-3.
  36. Cruickshank JM, Neil-Dwyer G, et al. Reduction of stress/catecholamine-induced cardiac necrosis by beta 1-selective blockade. The Lancet 1987;2(8559):585–589. DOI: 10.1016/S0140-6736(87)92984-9.
  37. Patel MB, McKenna JW, et al. Decreasing adrenergic or sympathetic hyperactivity after severe traumatic brain injury using propranolol and clonidine (DASH After TBI Study): study protocol for a randomized controlled trial. Trials 2012;13(1):177. DOI: 10.1186/1745-6215-13-177.
  38. Alali AS, McCredie VA, et al. Beta blockers for acute traumatic brain injury: a systematic review and meta-analysis. Neurocrit Care 2014;20(3):514–523. DOI: 10.1007/s12028-013-9903-5.
  39. Alali AS, Mukherjee K, et al. Beta-blockers and Traumatic Brain Injury. Annals of Surgery 2017;266(6):952–961. DOI: 10.1097/SLA.0000000000002286.
  40. Chen Z, Tang L, et al. Therapeutic effect of beta-blocker in patients with traumatic brain injury: A systematic review and meta-analysis. Crit Care Med 2017;41(C):240–246. DOI: 10.1016/j.jcrc.2017.05.035.
  41. Ahl R, Thelin EP, et al. β-Blocker after severe traumatic brain injury is associated with better long-term functional outcome: a matched case control study. Eur J Trauma Emerg Surg 2017;43(6):783–789. DOI: 10.1007/s00068-017-0779-5.
  42. Ahl R, Sjolin G, et al. Does early beta-blockade in isolated severe traumatic brain injury reduce the risk of post traumatic depression? Injury 2017;48(1):101–105. DOI: 10.1016/j.injury.2016.10.041.
  43. Ahl R, Barmparas G, et al. Does Beta-Blockade Reduce the Risk of Depression in Patients with Isolated Severe Extracranial Injuries? World J Surg 2017;41(7):1801–1806. DOI: 10.1007/s00268-017-3935-5.
  44. Naredi S, Eden E, et al. A standardized neurosurgical neurointensive therapy directed toward vasogenic edema after severe traumatic brain injury: clinical results. Intensive Care Med 1998;24(5):446–451. DOI: 10.1007/s001340050594.
  45. Stocchetti N, Maas AIR. Traumatic Intracranial Hypertension. N Engl J Med 2014;370(22):2121–2130. DOI: 10.1056/NEJMra1208708.
  46. Muizelaar JP, Marmarou A, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg 1991;75(5):731–739. DOI: 10.3171/jns.1991.75.5.0731.
  47. Andrews PJD, Harris BA, et al. Hypothermia for Intracranial Hypertension after Traumatic Brain Injury. N Engl J Med 2016;374(14):1385–1385. DOI: 10.1056/NEJMc1600339.
  48. Hutchinson PJ, Kolias AG, et al. Trial of Decompressive Craniectomy for Traumatic Intracranial Hypertension. N Engl J Med 2016 Sep 22;375(12):1119–1130. DOI: 10.1056/NEJMoa1605215.
  49. Asgeirsson B, Grände PO, et al. A new therapy of post-trauma brain oedema based on haemodynamic principles for brain volume regulation. Intensive Care Med 1994;20(4):260–267. DOI: 10.1007/BF01708961.
  50. Schroeppel TJ, Sharpe JP, et al. Traumatic brain injury and beta-blockers: not all drugs are created equal. J Trauma Acute Care Surg 2014;76(2):504–509, discussion509. 10.1097/TA.0000000000000104.
  51. Ley EJ, Leonard SD, et al. Beta blockers in critically ill patients with traumatic brain injury. J Trauma Acute Care Surg 2018;84(2):234–244. DOI: 10.1097/TA.0000000000001747.
  52. Edavettal M, Gross BW, et al. An Analysis of Beta-Blocker Administration Pre-and Post-Traumatic Brain Injury with Subanalyses for Head Injury Severity and Myocardial Injury. Am Surg 2016;82(12):1203–1208.
  53. JS Murry, DM Hoang, et al. Prospective evaluation of early propranolol after traumatic brain injury. J Surg Res 2016;200(1):221–226. DOI: 10.1016/j.jss.2015.06.045.
  54. B Zangbar, M Khalil, et al. Metoprolol improves survival in severe traumatic brain injury independent of heart rate control. J Surg Res 2016;200(2):586–592. DOI: 10.1016/j.jss.2015.08.020.
  55. Ko A, Harada MY, et al. Early propranolol after traumatic brain injury is associated with lower mortality. J Trauma Acute Care Surg 2016;80(4):637–642. DOI: 10.1097/TA.0000000000000959.
  56. Mohseni S, Talving P, et al. The Effect of β-blockade on Survival After Isolated Severe Traumatic Brain Injury. World J Surg April 2015; 1–8. DOI: 10.1007/s00268-015-3039-z.
  57. Mohseni S, Talving P, et al. Preinjury β-blockade is protective in isolated severe traumatic brain injury. J Trauma Acute Care Surg 2014;76(3):804–808. DOI: 10.1097/TA.0000000000000139.
  58. Bukur M, Mosheni S, et al. Efficacy of beta-blockade after isolated blunt head injury. J Trauma 2012;72(4):1013–1018. DOI: 10.1097/TA.0b013e318241bc5b.
  59. Schroeppel TJ, Fischer PE, et al. Beta-Adrenergic Blockade and Traumatic Brain Injury: Protective? J Trauma 2010;69(4):776–782. DOI: 10.1097/TA.0b013e3181e981b8.
  60. Inaba K, Teixeira PGR, et al. Beta-Blockers in Isolated Blunt Head Injury. J Am Coll Surg 2008;206(3):432–438. DOI: 10.1016/j.jamcollsurg.2007.10.005.
  61. Cotton BA, Snodgrass KB, et al. Beta-Blocker Exposure is Associated With Improved Survival After Severe Traumatic Brain Injury. J Trauma 2007;62(1):26–35. DOI: 10.1097/TA.0b013e31802d02d0.
  62. Arbabi S, Campion EM, et al. Beta-Blocker Use is Associated With Improved Outcomes in Adult Trauma Patients. J Trauma 2007;62(1):56–62. DOI: 10.1097/TA.0b013e31802d972b.
  63. Di Battista AP, Rhind SG, et al. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J Neuroinflammation 2016;13(1):1–14. DOI: 10.1186/s12974-016-0500-3.
  64. Di Battista AP, Rizoli SB, et al. Sympathoadrenal Activation is Associated with Acute Traumatic Coagulopathy and Endotheliopathy in Isolated Brain Injury. Shock 2016;46:96–103. DOI: 10.1097/SHK.0000000000000642
  65. Riordan WP, Cotton BA, et al. Blocker Exposure in Patients With Severe Traumatic Brain Injury (TBI) and Cardiac Uncoupling. J Trauma 2007;63(3):503–510. DOI: 10.1097/TA.0b013e3181271c34.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.