Panamerican Journal of Trauma, Critical Care & Emergency Surgery

Register      Login

VOLUME 9 , ISSUE 2 ( May-August, 2020 ) > List of Articles


Perspectives and Recommendations for Laparoscopic Surgery in the COVID-19 Era

Andrés V Ayala, Sofía A Zárate, Andrés E Zabala, Luis Pacheco, Fernando I Narváez, María L Alvear, José R Negrete

Citation Information : Ayala AV, Zárate SA, Zabala AE, Pacheco L, Narváez FI, Alvear ML, Negrete JR. Perspectives and Recommendations for Laparoscopic Surgery in the COVID-19 Era. Panam J Trauma Crit Care Emerg Surg 2020; 9 (2):126-132.

DOI: 10.5005/jp-journals-10030-1279

License: CC BY-NC 4.0

Published Online: 18-11-2020

Copyright Statement:  Copyright © 2020; The Author(s).


A new human coronavirus called SARS-CoV-2 is currently causing a pandemic of the coronavirus disease 2019 (COVID-19). Healthcare institutions including surgical centers and their workers are in risk of contagion due to high exposure to SARS-CoV-2. The objective of the present manuscript is to review the available literature and elucidate the key points for maintaining safety in laparoscopic surgery during the pandemic. Currently, any patient who requires surgery and in whom the diagnosis of COVID-19 has not been ruled out should be treated as a positive patient and the correspondent safety measures should be taken. Surgical plume is a bioproduct that places healthcare workers who are exposed to it in a potential risk of acquiring different health conditions. There is no clear evidence to affirm that the exposure to surgical plume and pneumoperitoneum can cause COVID-19; nevertheless, as we do not know yet the real risk of transmission and infectivity of particles found in surgical smoke, it is recommended to take measures for a controlled evacuation of pneumoperitoneum and the use of a simple filtration system during laparoscopic surgery. We must understand that as our entire life changed with this pandemic, laparoscopic surgery should also change in particular aspects to give our patients the best treatment under the safest conditions as possible.

  1. Givi B, Schiff BA, Chinn SB, et al. Safety recommendations for evaluation and surgery of the head and neck during the COVID-19 pandemic. JAMA Otolaryngol Neck Surg [Internet] 2020(6). DOI: 10.1001/jamaoto.2020.0780Disponible en:
  2. Leung WK, To KF, Chan PK, et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology 2003;125(4):1011–1017. DOI: 10.1016/s0016-5085(03)01215-0.
  3. Gu J, Han B, Wang J. COVID-19: gastrointestinal manifestations and potential Fecal–oral transmission. Gastroenterology 2020;158(6): 1518–1519. DOI: 10.1053/j.gastro.2020.02.054.
  4. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020;382(8):727–733. DOI: 10.1056/NEJMoa2001017.
  5. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature [Internet] 2020(7809). DOI: 10.1038/s41586-020-2196-xDisponible en:
  6. Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. The Lancet 2020;395(10226):809–815. DOI: 10.1016/S0140-6736(20)30360-3.
  7. Chen Y, Peng H, Wang L, et al. Infants born to mothers with a new coronavirus (COVID-19). Front Pediatr 2020;8:104. DOI: 10.3389/fped.2020.00104.
  8. Taylor G, Shannon-Lowe C, Long H, et al. Potential for COVID-19 coronavirus (SARS-CoV-2) exposure during laparoscopic gynaecological surgery [internet]. Med Pharmacol 2020. Disponible en:
  9. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020;382(16):1564–1567. DOI: 10.1056/NEJMc2004973.
  10. Crossley J, Clark C, Brody F, et al. Surgical considerations for an awake tracheotomy during the COVID-19 pandemic. J Laparoendosc Adv Surg Tech 2020;30(5):477–480. DOI: 10.1089/lap.2020.0239.
  11. COVID-19 situation reports [Internet]. [citado 06 de junio de 2020]. Disponible en:
  12. Tran K, Cimon K, Severn M, et al. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. Semple MG, ed. PLoS ONE 2012;7(4):e35797. DOI: 10.1371/journal.pone.0035797.
  13. Chan JF-W, Yuan S, Kok K-H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet 2020;395(10223):514–523. DOI: 10.1016/S0140-6736(20)30154-9.
  14. Xia J, Tong J, Liu M, et al. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol 2020;92(6):589–594. DOI: 10.1002/jmv.25725.
  15. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020;382(10):929–936. DOI: 10.1056/NEJMoa2001191.
  16. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020;382(13):1199–1207. DOI: 10.1056/NEJMoa2001316.
  17. Zhao S, Lin Q, Ran J, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: a data-driven analysis in the early phase of the outbreak. Int J Infect Dis 2020;92:214–217. DOI: 10.1016/j.ijid.2020.01.050.
  18. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA 2020;323(14):1406. DOI: 10.1001/jama.2020.2565.
  19. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, china. JAMA 2020;323(11):1061. DOI: 10.1001/jama.2020.1585.
  20. Zhou Z, Zhao N, Shu Y, et al. Effect of gastrointestinal symptoms on patients infected with coronavirus disease 2019. Gastroenterology 2020. S0016508520303620.
  21. Song Y, Liu P, Shi XL, et al. SARS-CoV-2 induced diarrhoea as onset symptom in patient with COVID-19. Gut 2020;69(6):1143–1144. DOI: 10.1136/gutjnl-2020-320891.
  22. Al-Balas M, Al-Balas HI, Al-Balas H. Surgery during the COVID-19 pandemic: a comprehensive overview and perioperative care. Am J Surg 2020(6):S0002961020302221. DOI: 10.1016/j.amjsurg.2020.04.018.
  23. Greenland JR, Michelow MD, Wang L, et al. COVID-19 infection: implications for perioperative and critical care physicians. Anesthesiology junio de 2020;132(6):1346–1361. DOI: 10.1097/ALN.0000000000003303.
  24. Zhang L, Zhu F, Xie L, et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan. China Ann Oncol 2020(7):S0923753420363833. DOI: 10.1016/j.annonc.2020.03.296.
  25. Coronavirus disease 2019 (COVID-19) - symptoms, diagnosis and treatment. BMJ Best Practice [Internet] 2020. Disponible en:
  26. Advice on the use of point-of-care immunodiagnostic tests for COVID-19 [Internet]. [citado 16 de mayo de 2020]. Disponible en:
  27. Miguel IJA, Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica [Internet]. SEIMC. [citado 16 de mayo de 2020]. Disponible en:
  28. if-ppih-covid-19-sag-priority-groups-for-asymptomatic-testing-rapid-review.pdf [Internet]. [citado 16 de mayo de 2020]. Disponible en:
  29. Tao KX, Zhang BX, Zhang P, et al. Recommendations for general surgery clinical practice in novel coronavirus pneumonia situation. Zhonghua Wai Ke Za Zhi 2020;58(0):E001. DOI: 10.3760/cma.j.issn.0529-5815.2020.0001.
  30. Makison Booth C, Clayton M, Crook B, et al. Effectiveness of surgical masks against influenza bioaerosols. J Hosp Infect 2013;84(1):22–26. DOI: 10.1016/j.jhin.2013.02.007.
  31. Benson SM, Novak DA, Ogg MJ. Proper use of surgical N95 respirators and surgical masks in the OR. AORN J 2013;97(4):457–470. DOI: 10.1016/j.aorn.2013.01.015.
  32. Coccolini F, Perrone G, Chiarugi M, et al. Surgery in COVID-19 patients: operational directives. World J Emerg Surg 2020;15(1):25. DOI: 10.1186/s13017-020-00307-2.
  33. Forrester JD, Nassar AK, Maggio PM, et al. Precautions for operating room team members during the COVID-19 pandemic. J Am Coll Surg 2020(6):S1072751520303033. DOI: 10.1016/j.jamcollsurg.2020.03.030.
  34. Birmingham, Intercollegiate Guidance for Pre-Operative Chest CT imaging for elective cancer surgery during the COVID-19 Pandemic [Internet]. The Royal College of Surgeons of Edinburgh. [citado 16 de mayo de 2020]. Disponible en:
  35. Stahel PF. How to risk-stratify elective surgery during the COVID-19 pandemic? Patient Saf Surg 2020;14(1):8. DOI: 10.1186/s13037-020-00235-9.
  36. Lei S, Jiang F, Su W, et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. E Clin Med 2020;21:100331. DOI: 10.1016/j.eclinm.2020.100363.
  37. Control of smoke from laser/electric surgical procedures. Appl Occup Environ Hyg 1999;14(2):71–71. DOI: 10.1080/104732299303205.
  38. Fencl JL. Guideline implementation: surgical smoke safety. AORN J 2017;105(5):488–497. DOI: 10.1016/j.aorn.2017.03.006.
  39. Bree K, Barnhill S, Rundell W. The dangers of electrosurgical smoke to operating room personnel: a review. Workplace Health Saf 2017;65(11):517–526. DOI: 10.1177/2165079917691063.
  40. Liu Y, Song Y, Hu X, et al. Awareness of surgical smoke hazards and enhancement of surgical smoke prevention among the gynecologists. J Cancer 2019;10(12):2788–2799. DOI: 10.7150/jca.31464.
  41. Ball K. Surgical smoke evacuation guidelines: are you compliant? Nurse 2011;5(6):40–44. DOI: 10.1097/01.ORN.0000398900.12829.09.
  42. Li C-I, Pai J-Y, Chen C-H. Characterization of smoke generated during the use of surgical knife in laparotomy surgeries. J Air Waste Manag Assoc 2020;70(3):324–332. DOI: 10.1080/10962247.2020.1717675.
  43. Tomita Y, Mihashi S, Nagata K, et al. Mutagenicity of smoke condensates induced by CO2-laser irradiation and electrocauterization. Mutat Res 1981;89(2):145–149. DOI: 10.1016/0165-1218(81)90120-8.
  44. Mowbray N, Ansell J, Warren N, et al. Is surgical smoke harmful to theater staff? a systematic review. Surg Endosc 2013;27(9):3100–3107. DOI: 10.1007/s00464-013-2940-5.
  45. Alp E, Bijl D, Bleichrodt RP, et al. Surgical smoke and infection control. J Hosp Infect 2006;62(1):1–5. DOI: 10.1016/j.jhin.2005.01.014.
  46. Andréasson SN, Anundi H, Sahlberg B, et al. Peritonectomy with high voltage electrocautery generates higher levels of ultrafine smoke particles. Eur J Surg Oncol EJSO 2009;35(7):780–784. DOI: 10.1016/j.ejso.2008.09.002.
  47. Brüske-Hohlfeld I, Preissler G, Jauch K-W, et al. Surgical smoke and ultrafine particles. J Occup Med Toxicol 2008;3(1):31. DOI: 10.1186/1745-6673-3-31.
  48. DesCôteaux J-G, Picard P, Poulin ÉC, et al. Preliminary study of electrocautery smoke particles produced in vitro and during laparoscopic procedures. Surg Endosc 1996;10(2):152–158. DOI: 10.1007/BF00188362.
  49. Nezhat C, Winer WK, Nezhat F, et al. Smoke from laser surgery: is there a health hazard? Lasers Surg Med 1987;7(4):376–382. DOI: 10.1002/lsm.1900070414.
  50. Smith J, Yeh HC, Muggenburg B, et al. Study design for the characterization of aerosols during surgical procedures. Scand J Work Environ Health 1992;18(Suppl 2):106–109.
  51. Kwak HD, Kim S-H, Seo YS, et al. Detecting hepatitis B virus in surgical smoke emitted during laparoscopic surgery. Occup Environ Med 2016(12):oemed-2016–103724. DOI: 10.1136/oemed-2016- 103724.
  52. Capizzi PJ, Clay RP, Battey MJ. Microbiologic activity in laser resurfacing plume and debris. Lasers Surg Med 1998;23(3):172–174. DOI: 10.1002/(sici)1096-9101(1998);2-m.
  53. Johnson GK, Robinson WS. Human immunodeficiency virus-1 (HIV-1) in the vapors of surgical power instruments. J Med Virol 1991;33(1):47–50. DOI: 10.1002/jmv.1890330110.
  54. Manson LT, Damrose EJ. Does exposure to laser plume place the surgeon at high risk for acquiring clinical human papillomavirus infection?: HPV infection from surgical smoke. Laryngoscope 2013;123(6):1319–1320. DOI: 10.1002/lary.23642.
  55. Neumann K, Cavalar M, Rody A, et al. Is surgical plume developing during routine LEEPs contaminated with high-risk HPV? A pilot series of experiments. Arch Gynecol Obstet 2018;297(2):421–424. DOI: 10.1007/s00404-017-4615-2.
  56. Ulmer BC. The hazards of surgical smoke. AORN J 2008;87(4):721–738. DOI: 10.1016/j.aorn.2007.10.012.
  57. Lewin JM, Brauer JA, Ostad A. Surgical smoke and the dermatologist. J Am Acad Dermatol 2011;65(3):636–641. DOI: 10.1016/j.jaad.2010. 11.017.
  58. Diettrich NA, Kaplan G. Laparoscopic surgery for HIV-infected patients: minimizing dangers for all concerned. J Laparoendosc Surg 1991;1(5):295–298. DOI: 10.1089/lps.1991.1.295.
  59. Di Saverio S, Khan M, Pata F, et al. Laparoscopy at all costs? not now during COVID-19 and not for acute care surgery and emergency colorectal surgery: a practical algorithm from a hub tertiary teaching hospital in Northern Lombardy, Italy. J Trauma Acute Care Surg 2020(6):1. DOI: 10.1097/TA.0000000000002727.
  60. JMose B, JMose B, Rubio Pérez I, et al. Manejo quirúrgico de pacientes con infección por COVID-19. Recomendaciones de la Asociación Española de Cirujanos. Cir Esp 2020;98(5):251–259.
  61. Singhal R. Internal hernia in the times of COVID-19: to laparoscope or not to laparoscope? Obes Surg [Internet] 2020. Disponible en:
  62. Vigneswaran Y, Prachand VN, Posner MC, et al. What is the appropriate use of laparoscopy over open procedures in the current COVID-19 climate? J Gastrointest Surg [Internet] 2020. DOI: 10.1007/s11605-020-04592-9Disponible en:
  63. Morris SN, Fader AN, Milad MP, et al. Understanding the “Scope” of the problem: why laparoscopy is considered safe during the COVID-19 pandemic. J Minim Invasive Gynecol 2020;27(4):789–791. DOI: 10.1016/j.jmig.2020.04.002.
  64. Brown J. Surgical decision making in the era of COVID-19: a new set of rules. J Minim Invasive Gynecol 2020;27(4):785–786. DOI: 10.1016/j.jmig.2020.04.001.
  65. Chew M, Koh F, Ng K. A call to arms: a perspective of safe general surgery in Singapore during the COVID-19 pandemic. Singapore Med J [Internet] 2020. DOI: 10.11622/smedj.2020049Disponible en:
  66. Spruce L, Braswell ML. Implementing AORN recommended practices for electrosurgery. AORN J 2012;95(3):373–387. DOI: 10.1016/j.aorn.2011.12.018.
  67. Dellamonica J, Boisseau N, Goubaux B, et al. Comparison of manufacturers’ specifications for 44 types of heat and moisture exchanging filters. Br J Anaesth 2004;93(4):532–539. DOI: 10.1093/bja/aeh239.
  68. Mintz Y, Arezzo A, Boni L, et al. A low cost, safe and effective method for smoke evacuation in laparoscopic surgery for suspected coronavirus patients. Ann Surg 2020(1):1. DOI: 10.1097/SLA.0000000000003965.
  69. Hanbali N, Herrod P, Patterson J. A safe method to evacuate pneumoperitoneum during laparoscopic surgery in suspected COVID-19 patients. Ann R Coll Surg Engl 2020;102(5):392–393. DOI: 10.1308/rcsann.2020.0079.
  70. CDC-NIOSH Study Finds Healthcare Workers’ Exposure to Surgical Smoke Still Common - NIOSH Press Release [Internet]. 2019 [citado 16 de mayo de 2020]. Disponible en:
  71. Schultz L. An analysis of surgical smoke plume components, capture, and evacuation. AORN J 2014;99(2):289–298. DOI: 10.1016/j.aorn.2013.07.020.
  72. Dobbie MK, Fezza M, Kent M, et al. Operation clean air: implementing a surgical smoke evacuation program. AORN J 2017;106(6):502–512. DOI: 10.1016/j.aorn.2017.09.011.
  73. Nishioka Y, Tzeng C-WD, Tran Cao HS, et al. COVID-19 outbreak and surgeons’ response at a cancer center in the United States. Glob Health Med 2020;2(2):135–137. DOI: 10.35772/ghm.2020.01021.
  74. Romano F, Gustén J, De Antonellis S, et al. Electrosurgical smoke: ultrafine particle measurements and work environment quality in different operating theatres. Int J Environ Res Public Health 2017;14(2):137. DOI: 10.3390/ijerph14020137.
  75. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020;395(10223):497–506. DOI: 10.1016/S0140-6736(20)30183-5.
  76. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 2020;382(12):1177–1179. DOI: 10.1056/NEJMc2001737.
  77. Caputo KM, Byrick R, Chapman MG, et al. Intubation of SARS patients: Infection and perspectives of healthcare workers. Can J Anesth Can Anesth 2006;53(2):122–129. DOI: 10.1007/BF03021815.
  78. Cohen SL, Liu G, Abrao M, et al. Perspectives on surgery in the time of COVID-19: Safety first. J Minim Invasive Gynecol 2020;27(4):792–793. DOI: 10.1016/j.jmig.2020.04.003.
  79. Brindle M, Gawande A. Managing COVID-19 in surgical systems. Ann Surg 2020(1):1. DOI: 10.1097/SLA.0000000000003923.
  80. Zheng MH, Boni L, Fingerhut A. Minimally invasive surgery and the novel coronavirus outbreak: Lessons learned in china and Italy. Ann Surg 2020(1):1. DOI: 10.1097/SLA.0000000000003924.
  81. Novara G, Giannarini G, De Nunzio C, et al. Risk of SARS-CoV-2 diffusion when performing minimally invasive surgery during the COVID-19 pandemic. Eur Urol 2020. S0302283820302475. DOI: 10.1016/j.eururo.2020.04.015.
  82. Gao Y, Xi H, Chen L. Emergency surgery in suspected COVID-19 patients with acute abdomen: case series and perspectives. Ann Surg 2020. 1.
  83. Tuech J-J, Gangloff A, Di Fiore F, et al. Strategy for the practice of digestive and oncological surgery during the COVID-19 epidemic. J Visc Surg 2020. S1878788620300709. DOI: 10.1016/j.jviscsurg.2020.03.008.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.